Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

tvGP-VAE: Tensor-variate Gaussian Process Prior Variational Autoencoder (2006.04788v1)

Published 8 Jun 2020 in cs.LG and stat.ML

Abstract: Variational autoencoders (VAEs) are a powerful class of deep generative latent variable model for unsupervised representation learning on high-dimensional data. To ensure computational tractability, VAEs are often implemented with a univariate standard Gaussian prior and a mean-field Gaussian variational posterior distribution. This results in a vector-valued latent variables that are agnostic to the original data structure which might be highly correlated across and within multiple dimensions. We propose a tensor-variate extension to the VAE framework, the tensor-variate Gaussian process prior variational autoencoder (tvGP-VAE), which replaces the standard univariate Gaussian prior and posterior distributions with tensor-variate Gaussian processes. The tvGP-VAE is able to explicitly model correlation structures via the use of kernel functions over the dimensions of tensor-valued latent variables. Using spatiotemporally correlated image time series as an example, we show that the choice of which correlation structures to explicitly represent in the latent space has a significant impact on model performance in terms of reconstruction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Alex Campbell (1 paper)
  2. Pietro Liò (270 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.