Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Boundary regularity, Pohozaev identities, and nonexistence results (1705.05525v1)

Published 16 May 2017 in math.AP

Abstract: In this expository paper we survey some recent results on Dirichlet problems of the form $Lu=f(x,u)$ in $\Omega$, $u\equiv0$ in $\mathbb Rn\backslash\Omega$. We first discuss in detail the boundary regularity of solutions, stating the main known results of Grubb and of the author and Serra. We also give a simplified proof of one of such results, focusing on the main ideas and on the blow-up techniques that we developed in \cite{RS-K,RS-stable}. After this, we present the Pohozaev identities established in \cite{RS-Poh,RSV,Grubb-Poh} and give a sketch of their proofs, which use strongly the fine boundary regularity results discussed previously. Finally, we show how these Pohozaev identities can be used to deduce nonexistence of solutions or unique continuation properties. The operators $L$ under consideration are integro-differential operator of order $2s$, $s\in(0,1)$, the model case being the fractional Laplacian $L=(-\Delta)s$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube