Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cooperative Learning with Visual Attributes (1705.05512v1)

Published 16 May 2017 in cs.CV

Abstract: Learning paradigms involving varying levels of supervision have received a lot of interest within the computer vision and machine learning communities. The supervisory information is typically considered to come from a human supervisor -- a "teacher" figure. In this paper, we consider an alternate source of supervision -- a "peer" -- i.e. a different machine. We introduce cooperative learning, where two agents trying to learn the same visual concepts, but in potentially different environments using different sources of data (sensors), communicate their current knowledge of these concepts to each other. Given the distinct sources of data in both agents, the mode of communication between the two agents is not obvious. We propose the use of visual attributes -- semantic mid-level visual properties such as furry, wooden, etc.-- as the mode of communication between the agents. Our experiments in three domains -- objects, scenes, and animals -- demonstrate that our proposed cooperative learning approach improves the performance of both agents as compared to their performance if they were to learn in isolation. Our approach is particularly applicable in scenarios where privacy, security and/or bandwidth constraints restrict the amount and type of information the two agents can exchange.

Citations (29)

Summary

We haven't generated a summary for this paper yet.