Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Kimi K2 160 tok/s Pro
2000 character limit reached

Geometrically finite amalgamations of hyperbolic 3-manifold groups are not LERF (1705.03498v1)

Published 9 May 2017 in math.GT and math.GR

Abstract: We prove that, for any two finite volume hyperbolic $3$-manifolds, the amalgamation of their fundamental groups along any nontrivial geometrically finite subgroup is not LERF. This generalizes the author's previous work on nonLERFness of amalgamations of hyperbolic $3$-manifold groups along abelian subgroups. A consequence of this result is that closed arithmetic hyperbolic $4$-manifolds have nonLERF fundamental groups. Along with the author's previous work, we get that, for any arithmetic hyperbolic manifold with dimension at least $4$, with possible exceptions in $7$-dimensional manifolds defined by the octonion, its fundamental group is not LERF.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)