Boundedness in a fully parabolic chemotaxis system with nonlinear diffusion and sensitivity, and logistic source (1705.03200v1)
Abstract: In this paper we study the zero-flux chemotaxis-system \begin{equation*} \begin{cases} u_{ t}=\nabla \cdot ((u+1){m-1} \nabla u-(u+1)\alpha \chi(v)\nabla v) + ku-\mu u2 & x\in \Omega, t>0, \ v_{t} = \Delta v-vu & x\in \Omega, t>0,\ \end{cases} \end{equation*} $\Omega$ being a bounded and smooth domain of $\mathbb{R}n$, $n\geq 1$, and where $m,k \in \mathbb{R}$, $\mu>0$ and $\alpha < \frac{m+1}{2}$. For any $v\geq 0$ the chemotactic sensitivity function is assumed to behave as the prototype $\chi(v) = \frac{\chi_0}{(1+av)2}$, with $a\geq 0$ and $\chi_0>0$. We prove that for nonnegative and sufficiently regular initial data $u(x,0)$ and $v(x,0),$ the corresponding initial-boundary value problem admits a global bounded classical solution provided $\mu$ is large enough.