Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundedness to a logistic chemotaxis system with singular sensitivity (2003.03016v1)

Published 6 Mar 2020 in math.AP

Abstract: In this paper, we study the parabolic-elliptic Keller-Segel system with singular sensitivity and logistic-type source: $ u_t=\Delta u-\chi\nabla\cdot(\frac{u}{v}\nabla v)+ru-\mu uk$, $0=\Delta v-v+u$ under the non-flux boundary conditions in a smooth bounded convex domain $\Omega\subset\mathbb{R}n$, $\chi,r,\mu>0$, $k>1$ and $n\ge 2$. It is shown that the system possesses a globally bounded classical solution if $k>\frac{3n-2}{n}$, and $r>\frac{\chi2}{4}$ for $0<\chi\le 2$, or $r> \chi-1$ for $\chi>2$. In addition, under the same condition for $r,\chi$, the system admits a global generalized solution when $k\in(2-\frac{1}{n},\frac{3n-2}{n}]$, moreover this global generalized solution should be globally bounded provided $\frac{r}{\mu}$ and the initial data $u_0$ suitably small.

Summary

We haven't generated a summary for this paper yet.