Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Discriminant analysis in small and large dimensions (1705.02826v1)

Published 8 May 2017 in math.ST and stat.TH

Abstract: We study the distributional properties of the linear discriminant function under the assumption of normality by comparing two groups with the same covariance matrix but different mean vectors. A stochastic representation for the discriminant function coefficients is derived which is then used to obtain their asymptotic distribution under the high-dimensional asymptotic regime. We investigate the performance of the classification analysis based on the discriminant function in both small and large dimensions. A stochastic representation is established which allows to compute the error rate in an efficient way. We further compare the calculated error rate with the optimal one obtained under the assumption that the covariance matrix and the two mean vectors are known. Finally, we present an analytical expression of the error rate calculated in the high-dimensional asymptotic regime. The finite-sample properties of the derived theoretical results are assessed via an extensive Monte Carlo study.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.