Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Optimal shape design for 2D heat equations in large time (1705.02764v1)

Published 8 May 2017 in math.OC

Abstract: In this paper, we investigate the asymptotic behavior of optimal designs for the shape optimization of 2D heat equations in long time horizons. The control is the shape of the domain on which heat diffuses. The class of 2D admissible shapes is the one introduced by Sver\'{a}k, of all open subsets of a given bounded open set, whose complementary sets have a uniformly bounded number of connected components. Using a $\Gamma$-convergence approach, we establish that the parabolic optimal designs converge as the length of the time horizon tends to infinity, in the complementary Hausdorff topology, to an optimal design for the corresponding stationary elliptic equation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.