Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear Regression with Shuffled Labels (1705.01342v2)

Published 3 May 2017 in stat.ML

Abstract: Is it possible to perform linear regression on datasets whose labels are shuffled with respect to the inputs? We explore this question by proposing several estimators that recover the weights of a noisy linear model from labels that are shuffled by an unknown permutation. We show that the analog of the classical least-squares estimator produces inconsistent estimates in this setting, and introduce an estimator based on the self-moments of the input features and labels. We study the regimes in which each estimator excels, and generalize the estimators to the setting where partial ordering information is available in the form of experiments replicated independently. The result is a framework that enables robust inference, as we demonstrate by experiments on both synthetic and standard datasets, where we are able to recover approximate weights using only shuffled labels. Our work demonstrates that linear regression in the absence of complete ordering information is possible and can be of practical interest, particularly in experiments that characterize populations of particles, such as flow cytometry.

Citations (64)

Summary

We haven't generated a summary for this paper yet.