Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shuffled linear regression through graduated convex relaxation (2209.15608v1)

Published 30 Sep 2022 in stat.CO and cs.LG

Abstract: The shuffled linear regression problem aims to recover linear relationships in datasets where the correspondence between input and output is unknown. This problem arises in a wide range of applications including survey data, in which one needs to decide whether the anonymity of the responses can be preserved while uncovering significant statistical connections. In this work, we propose a novel optimization algorithm for shuffled linear regression based on a posterior-maximizing objective function assuming Gaussian noise prior. We compare and contrast our approach with existing methods on synthetic and real data. We show that our approach performs competitively while achieving empirical running-time improvements. Furthermore, we demonstrate that our algorithm is able to utilize the side information in the form of seeds, which recently came to prominence in related problems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.