Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The maximal operator of a normal Ornstein--Uhlenbeck semigroup is of weak type $(1,1)$ (1705.00833v3)

Published 2 May 2017 in math.FA

Abstract: Consider a normal Ornstein--Uhlenbeck semigroup in $\Bbb{R}n$, whose covariance is given by a positive definite matrix. The drift matrix is assumed to have eigenvalues only in the left half-plane. We prove that the associated maximal operator is of weak type $(1,1)$ with respect to the invariant measure. This extends earlier work by G. Mauceri and L. Noselli. The proof goes via the special case where the matrix defining the covariance is $I$ and the drift matrix is diagonal.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.