Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Proximal Planar Cech Nerves. An Approach to Approximating the Shapes of Irregular, Finite, Bounded Planar Regions (1704.05727v4)

Published 19 Apr 2017 in math.GN

Abstract: This article introduces proximal Cech nerves and Cech complexes, restricted to finite, bounded regions $K$ of the Euclidean plane. A Cech nerve is a collection of intersecting balls. A Cech complex is a collection of nerves that cover $K$. Cech nerves are proximal, provided the nerves are close to each other, either spatially or descriptively. A Cech nerve has an advantage over the usual Alexandroff nerve, since we need only identify the center and fixed radius of each ball in a Cech nerve instead of identifying the three vertices of intersecting filled triangles (2-simplexes) in an Alexandroff nerve. As a result, Cech nerves more easily cover $K$ and facilitate approximation of the shapes of irregular finite, bounded planar regions. A main result of this article is an extension of the Edelsbrunner-Harer Nerve Theorem for descriptive and non-descriptive Cech nerves and Cech complexes, covering $K$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)