Statistics, distillation, and ordering emergence in a two-dimensional stochastic model of particles in counterflowing streams (1704.05129v1)
Abstract: In this paper, we proposed a stochastic model which describes two species of particles moving in counterflow. The model generalizes the theoretical framework describing the transport in random systems since particles can work as mobile obstacles, whereas particles of one species move in opposite direction to the particles of the other species, or they can work as fixed obstacles remaining in their places during the time evolution. We conducted a detailed study about the statistics concerning the crossing time of particles, as well as the effects of the lateral transitions on the time required to the system reaches a state of complete geographic separation of species. The spatial effects of jamming were also studied by looking into the deformation of the concentration of particles in the two-dimensional corridor. Finally, we observed in our study the formation of patterns of lanes which reach the steady state regardless the initial conditions used for the evolution. A similar result is also observed in real experiments involving charged colloids motion and simulations of pedestrian dynamics based on Langevin equations, when periodic boundary conditions are considered (particles counterflow in a ring symmetry). The results obtained through Monte Carlo numerical simulations and numerical integrations are in good agreement with each other. However, differently from previous studies, the dynamics considered in this work is not Newton-based, and therefore, even artificial situations of self-propelled objects should be studied in this first-principle modeling.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.