Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Relaxation: partial differential equations for optimizing deep neural networks (1704.04932v2)

Published 17 Apr 2017 in cs.LG, math.AP, and math.OC

Abstract: In this paper we establish a connection between non-convex optimization methods for training deep neural networks and nonlinear partial differential equations (PDEs). Relaxation techniques arising in statistical physics which have already been used successfully in this context are reinterpreted as solutions of a viscous Hamilton-Jacobi PDE. Using a stochastic control interpretation allows we prove that the modified algorithm performs better in expectation that stochastic gradient descent. Well-known PDE regularity results allow us to analyze the geometry of the relaxed energy landscape, confirming empirical evidence. The PDE is derived from a stochastic homogenization problem, which arises in the implementation of the algorithm. The algorithms scale well in practice and can effectively tackle the high dimensionality of modern neural networks.

Citations (148)

Summary

We haven't generated a summary for this paper yet.