Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations (1901.10854v2)

Published 30 Jan 2019 in math.NA and cs.NA

Abstract: Deep neural networks and other deep learning methods have very successfully been applied to the numerical approximation of high-dimensional nonlinear parabolic partial differential equations (PDEs), which are widely used in finance, engineering, and natural sciences. In particular, simulations indicate that algorithms based on deep learning overcome the curse of dimensionality in the numerical approximation of solutions of semilinear PDEs. For certain linear PDEs this has also been proved mathematically. The key contribution of this article is to rigorously prove this for the first time for a class of nonlinear PDEs. More precisely, we prove in the case of semilinear heat equations with gradient-independent nonlinearities that the numbers of parameters of the employed deep neural networks grow at most polynomially in both the PDE dimension and the reciprocal of the prescribed approximation accuracy. Our proof relies on recently introduced multilevel Picard approximations of semilinear PDEs.

Citations (144)

Summary

We haven't generated a summary for this paper yet.