Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

(t,q) Q-systems, DAHA and quantum toroidal algebras via generalized Macdonald operators (1704.00154v2)

Published 1 Apr 2017 in math-ph, math.CO, math.MP, and math.RT

Abstract: We introduce difference operators on the space of symmetric functions which are a natural generalization of the $(q,t)$-Macdonald operators. In the $t\to\infty$ limit, they satisfy the $A_{N-1}$ quantum $Q$-system. We identify the elements in the spherical $A_{N-1}$ DAHA which are represented by these operators, as well as within the quantum toroidal algebra of $gl_1$ and the elliptic Hall algebra. We present a plethystic, or bosonic, formulation of the generating functions for the generalized Macdonald operators, which we relate to recent work of Bergeron et al. Finally we derive constant term identities for the current that allow to interpret them in terms of shuffle products. In particular we obtain in the $t\to\infty$ limit a shuffle presentation of the quantum $Q$-system relations.

Summary

We haven't generated a summary for this paper yet.