Hyperbolic Geometry of Superstring Perturbation Theory (1703.10563v3)
Abstract: We explore the hyperbolic structure of the RNS formulation of perturbative superstring theory. The aim is to provide a systematic method to explicitly compute on-shell and off-shell closed superstring amplitudes with an arbitrary number of external states and loops. Using hyperbolic geometry, we construct gluing-compatible off-shell string measures by giving a set of gluing-compatible local coordinates around external punctures and a gluing-compatible distribution of picture-changing operators. These amplitudes satisfy the required off-shell factorization property. This provides a formalism within which string-theory amplitudes can be computed explicitly once the corresponding string measures are expressed in terms of certain coordinates on Teichm\"uller space, the so-called Fenchel-Nielsen coordinates.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.