Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Position-based Content Attention for Time Series Forecasting with Sequence-to-sequence RNNs (1703.10089v2)

Published 29 Mar 2017 in cs.LG and cs.NE

Abstract: We propose here an extended attention model for sequence-to-sequence recurrent neural networks (RNNs) designed to capture (pseudo-)periods in time series. This extended attention model can be deployed on top of any RNN and is shown to yield state-of-the-art performance for time series forecasting on several univariate and multivariate time series.

Citations (73)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.