Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Out-of-Time-Ordered Correlators in $(T^2)^n/\mathbb{Z}_n$ (1703.09939v2)

Published 29 Mar 2017 in hep-th and cond-mat.stat-mech

Abstract: In this note we continue analysing the non-equilibrium dynamics in the $(T2)n/\mathbb{Z}_n$ orbifold conformal field theory. We compute the out-of-time-ordered four-point correlators with twist operators. For rational $\eta \ (=p/q)$ which is the square of the compactification radius, we find that the correlators approach non-trivial constants at late time. For $n=2$ they are expressed in terms of the modular matrices and for higher $n$ orbifolds are functions of $pq$ and $n$. For irrational $\eta$, we find a new polynomial decay of the correlators that is a signature of an intermediate regime between rational and chaotic models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.