Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepVisage: Making face recognition simple yet with powerful generalization skills (1703.08388v2)

Published 24 Mar 2017 in cs.CV

Abstract: Face recognition (FR) methods report significant performance by adopting the convolutional neural network (CNN) based learning methods. Although CNNs are mostly trained by optimizing the softmax loss, the recent trend shows an improvement of accuracy with different strategies, such as task-specific CNN learning with different loss functions, fine-tuning on target dataset, metric learning and concatenating features from multiple CNNs. Incorporating these tasks obviously requires additional efforts. Moreover, it demotivates the discovery of efficient CNN models for FR which are trained only with identity labels. We focus on this fact and propose an easily trainable and single CNN based FR method. Our CNN model exploits the residual learning framework. Additionally, it uses normalized features to compute the loss. Our extensive experiments show excellent generalization on different datasets. We obtain very competitive and state-of-the-art results on the LFW, IJB-A, YouTube faces and CACD datasets.

Citations (45)

Summary

We haven't generated a summary for this paper yet.