Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bimodules over uniformly oriented A_n quivers with radical square zero (1703.08377v1)

Published 24 Mar 2017 in math.RT

Abstract: We start with observing that the only connected finite dimensional algebras with finitely many isomorphism classes of indecomposable bimodules are the quotients of the path algebras of uniformly oriented $A_n$-quivers modulo the radical square zero relations. For such algebras we study the (finitary) tensor category of bimodules. We describe the cell structure of this tensor category, determine existing adjunctions between its $1$-morphisms and find a minimal generating set with respect to the tensor structure. We also prove that, for the algebras mentioned above, every simple transitive $2$-representation of the $2$-category of projective bimodules is equivalent to a cell $2$-representation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube