Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Harnack inequalities for curvature flows in Riemannian and Lorentzian manifolds (1703.07493v1)

Published 22 Mar 2017 in math.DG and math.AP

Abstract: We obtain Harnack estimates for a class of curvature flows in Riemannian manifolds of constant non-negative sectional curvature as well as in the Lorentzian Minkowski and de Sitter spaces. Furthermore, we prove a Harnack estimate with a bonus term for mean curvature flow in locally symmetric Riemannian Einstein manifold of non-negative sectional curvature. Using a concept of "duality" for strictly convex hypersurfaces, we also obtain a new type of inequalities, so-called "pseudo"-Harnack inequalities, for expanding flows in the sphere and in the hyperbolic space.

Summary

We haven't generated a summary for this paper yet.