Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Li-Yau gradient estimates for curvature flows in positively curved manifolds (1901.09763v1)

Published 28 Jan 2019 in math.DG and math.AP

Abstract: We prove differential Harnack inequalities for flows of strictly convex hypersurfaces by powers $p$, $0<p<1$, of the mean curvature in Einstein manifolds with a positive lower bound on the sectional curvature. We assume that this lower bound is sufficiently large compared to the derivatives of the curvature tensor of the ambient space and that the mean curvature of the initial hypersurface is sufficiently large compared to the ambient geometry. We also obtain some new Harnack inequalities for more general curvature flows in the sphere, as well as a monotonicity estimate for the mean curvature flow in non-negatively curved, locally symmetric spaces.

Summary

We haven't generated a summary for this paper yet.