Control and State Estimation of the One-Phase Stefan Problem via Backstepping Design (1703.05814v1)
Abstract: This paper develops a control and estimation design for the one-phase Stefan problem. The Stefan problem represents a liquid-solid phase transition as time evolution of a temperature profile in a liquid-solid material and its moving interface. This physical process is mathematically formulated as a diffusion partial differential equation (PDE) evolving on a time-varying spatial domain described by an ordinary differential equation (ODE). The state-dependency of the moving interface makes the coupled PDE-ODE system a nonlinear and challenging problem. We propose a full-state feedback control law, an observer design, and the associated output-feedback control law via the backstepping method. The designed observer allows estimation of the temperature profile based on the available measurement of solid phase length. The associated output-feedback controller ensures the global exponential stability of the estimation errors, the H1- norm of the distributed temperature, and the moving interface to the desired setpoint under some explicitly given restrictions on the setpoint and observer gain. The exponential stability results are established considering Neumann and Dirichlet boundary actuations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.