Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Noninformative Prior on a Space of Distribution Functions (1703.04661v3)

Published 14 Mar 2017 in math.ST and stat.TH

Abstract: In a given problem, the Bayesian statistical paradigm requires the specification of a prior distribution that quantifies relevant information about the unknowns of main interest external to the data. In cases where little such information is available, the problem under study may possess an invariance under a transformation group that encodes a lack of information, leading to a unique prior---this idea was explored at length by E.T. Jaynes. Previous successful examples have included location-scale invariance under linear transformation, multiplicative invariance of the rate at which events in a counting process are observed, and the derivation of the Haldane prior for a Bernoulli success probability. In this paper we show that this method can be extended, by generalizing Jaynes, in two ways: (1) to yield families of approximately invariant priors, and (2) to the infinite-dimensional setting, yielding families of priors on spaces of distribution functions. Our results can be used to describe conditions under which a particular Dirichlet Process posterior arises from an optimal Bayesian analysis, in the sense that invariances in the prior and likelihood lead to one and only one posterior distribution.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.