Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Stream Aggregation Through Order Sampling (1703.02693v2)

Published 8 Mar 2017 in cs.DS

Abstract: This is paper introduces a new single-pass reservoir weighted-sampling stream aggregation algorithm, Priority-Based Aggregation (PBA). While order sampling is a powerful and e cient method for weighted sampling from a stream of uniquely keyed items, there is no current algorithm that realizes the benefits of order sampling in the context of stream aggregation over non-unique keys. A naive approach to order sample regardless of key then aggregate the results is hopelessly inefficient. In distinction, our proposed algorithm uses a single persistent random variable across the lifetime of each key in the cache, and maintains unbiased estimates of the key aggregates that can be queried at any point in the stream. The basic approach can be supplemented with a Sample and Hold pre-sampling stage with a sampling rate adaptation controlled by PBA. This approach represents a considerable reduction in computational complexity compared with the state of the art in adapting Sample and Hold to operate with a fixed cache size. Concerning statistical properties, we prove that PBA provides unbiased estimates of the true aggregates. We analyze the computational complexity of PBA and its variants, and provide a detailed evaluation of its accuracy on synthetic and trace data. Weighted relative error is reduced by 40% to 65% at sampling rates of 5% to 17%, relative to Adaptive Sample and Hold; there is also substantial improvement for rank queries

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.