Mean field games with controlled jump-diffusion dynamics: Existence results and an illiquid interbank market model (1703.01919v3)
Abstract: We study a family of mean field games with a state variable evolving as a multivariate jump diffusion process. The jump component is driven by a Poisson process with a time-dependent intensity function. All coefficients, i.e. drift, volatility and jump size, are controlled. Under fairly general conditions, we establish existence of a solution in a relaxed version of the mean field game and give conditions under which the optimal strategies are in fact Markovian, hence extending to a jump-diffusion setting previous results established in [30]. The proofs rely upon the notions of relaxed controls and martingale problems. Finally, to complement the abstract existence results, we study a simple illiquid inter-bank market model, where the banks can change their reserves only at the jump times of some exogenous Poisson processes with a common constant intensity, and provide some numerical results.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.