Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differential-operator representations of Weyl group and singular vectors (1703.01098v1)

Published 3 Mar 2017 in math.RT

Abstract: Given a suitable ordering of the positive root system associated with a semisimple Lie algebra, there exists a natural correspondence between Verma modules and related polynomial algebras. With this, the Lie algebra action on a Verma module can be interpreted as a differential operator action on polynomials, and thus on the corresponding truncated formal power series. We prove that the space of truncated formal power series is a differential-operator representation of the Weyl group $W$. We also introduce a system of partial differential equations to investigate singular vectors in the Verma module. It is shown that the solution space of the system in the space of truncated formal power series is the span of ${w(1)\ |\ w\in W}$. Those $w(1)$ that are polynomials correspond to singular vectors in the Verma module. This elementary approach by partial differential equations also gives a new proof of the well-known BGG-Verma Theorem.

Summary

We haven't generated a summary for this paper yet.