Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Branching laws for Verma modules and applications in parabolic geometry. I (1305.6040v3)

Published 26 May 2013 in math.RT, math-ph, math.AP, math.DG, math.FA, and math.MP

Abstract: We initiate a new study of differential operators with symmetries and combine this with the study of branching laws for Verma modules of reductive Lie algebras. By the criterion for discretely decomposable and multiplicity-free restrictions of generalized Verma modules [T. Kobayashi, http://dx.doi.org/10.1007/s00031-012-9180-y {Transf. Groups (2012)}], we are brought to natural settings of parabolic geometries for which there exist unique equivariant differential operators to submanifolds. Then we apply a new method (F-method) relying on the Fourier transform to find singular vectors in generalized Verma modules, which significantly simplifies and generalizes many preceding works. In certain cases, it also determines the Jordan--H\"older series of the restriction for singular parameters. The F-method yields an explicit formula of such unique operators, for example, giving an intrinsic and new proof of Juhl's conformally invariant differential operators [Juhl, http://dx.doi.org/10.1007/978-3-7643-9900-9 {Progr. Math. 2009}] and its generalizations. This article is the first in the series, and the next ones include their extension to curved cases together with more applications of the F-method to various settings in parabolic geometries.

Summary

We haven't generated a summary for this paper yet.