Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fast and slow thermal processes in harmonic scalar lattices (1702.08686v4)

Published 28 Feb 2017 in cond-mat.stat-mech, cond-mat.mes-hall, physics.class-ph, and physics.comp-ph

Abstract: An approach for analytical description of thermal processes in harmonic lattices is presented. We cover longitudinal and transverse vibrations of chains and out-of-plane vibrations of two-dimensional lattices with interactions of an arbitrary number of neighbors. Motion of each particle is governed by a single scalar equation and therefore the notion "scalar lattice" is used. Evolution of initial temperature field in an infinite lattice is investigated. An exact equation describing the evolution is derived. Continualization of this equation with respect to spatial coordinates is carried out. The resulting continuum equation is solved analytically. The solution shows that the kinetic temperature is represented as the sum of two terms, one describing short time behavior, the other large time behavior. At short times, the temperature performs high-frequency oscillations caused by redistribution of energy among kinetic and potential forms (fast process). Characteristic time of this process is of order of ten periods of atomic vibrations. At large times, changes of the temperature are caused by ballistic heat transfer (slow process). The temperature field is represented as a superposition of waves having the shape of initial temperature distribution and propagating with group velocities dependent on the wave vector. Expressions describing fast and slow processes are invariant with respect to substitution $t$ by $-t$. However examples considered in the paper demonstrate that these processes are irreversible. Numerical simulations show that presented theory describes the evolution of temperature field at short and large time scales with high accuracy.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.