Mean-square stability analysis of approximations of stochastic differential equations in infinite dimensions (1702.07700v2)
Abstract: The (asymptotic) behaviour of the second moment of solutions to stochastic differential equations is treated in mean-square stability analysis. This property is discussed for approximations of infinite-dimensional stochastic differential equations and necessary and sufficient conditions ensuring mean-square stability are given. They are applied to typical discretization schemes such as combinations of spectral Galerkin, finite element, Euler-Maruyama, Milstein, Crank-Nicolson, and forward and backward Euler methods. Furthermore, results on the relation to stability properties of corresponding analytical solutions are provided. Simulations of the stochastic heat equation illustrate the theory.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.