Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Deep Features via Congenerous Cosine Loss for Person Recognition (1702.06890v2)

Published 22 Feb 2017 in cs.CV, cs.LG, and stat.ML

Abstract: Person recognition aims at recognizing the same identity across time and space with complicated scenes and similar appearance. In this paper, we propose a novel method to address this task by training a network to obtain robust and representative features. The intuition is that we directly compare and optimize the cosine distance between two features - enlarging inter-class distinction as well as alleviating inner-class variance. We propose a congenerous cosine loss by minimizing the cosine distance between samples and their cluster centroid in a cooperative way. Such a design reduces the complexity and could be implemented via softmax with normalized inputs. Our method also differs from previous work in person recognition that we do not conduct a second training on the test subset. The identity of a person is determined by measuring the similarity from several body regions in the reference set. Experimental results show that the proposed approach achieves better classification accuracy against previous state-of-the-arts.

Citations (50)

Summary

We haven't generated a summary for this paper yet.