Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Ranking Model by Large Adaptive Margin Learning for Person Re-identification (1707.00409v2)

Published 3 Jul 2017 in cs.CV

Abstract: Person re-identification aims to match images of the same person across disjoint camera views, which is a challenging problem in video surveillance. The major challenge of this task lies in how to preserve the similarity of the same person against large variations caused by complex backgrounds, mutual occlusions and different illuminations, while discriminating the different individuals. In this paper, we present a novel deep ranking model with feature learning and fusion by learning a large adaptive margin between the intra-class distance and inter-class distance to solve the person re-identification problem. Specifically, we organize the training images into a batch of pairwise samples. Treating these pairwise samples as inputs, we build a novel part-based deep convolutional neural network (CNN) to learn the layered feature representations by preserving a large adaptive margin. As a result, the final learned model can effectively find out the matched target to the anchor image among a number of candidates in the gallery image set by learning discriminative and stable feature representations. Overcoming the weaknesses of conventional fixed-margin loss functions, our adaptive margin loss function is more appropriate for the dynamic feature space. On four benchmark datasets, PRID2011, Market1501, CUHK01 and 3DPeS, we extensively conduct comparative evaluations to demonstrate the advantages of the proposed method over the state-of-the-art approaches in person re-identification.

Citations (48)

Summary

We haven't generated a summary for this paper yet.