Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When can Graph Hyperbolicity be computed in Linear Time? (1702.06503v1)

Published 21 Feb 2017 in cs.CC and cs.DS

Abstract: Hyperbolicity measures, in terms of (distance) metrics, how close a given graph is to being a tree. Due to its relevance in modeling real-world networks, hyperbolicity has seen intensive research over the last years. Unfortunately, the best known algorithms for computing the hyperbolicity number of a graph (the smaller, the more tree-like) have running time $O(n4)$, where $n$ is the number of graph vertices. Exploiting the framework of parameterized complexity analysis, we explore possibilities for "linear-time FPT" algorithms to compute hyperbolicity. For instance, we show that hyperbolicity can be computed in time $O(2{O(k)} + n +m)$ ($m$ being the number of graph edges) while at the same time, unless the SETH fails, there is no $2{o(k)}n2$-time algorithm.

Citations (17)

Summary

We haven't generated a summary for this paper yet.