Separator Theorem and Algorithms for Planar Hyperbolic Graphs (2310.11283v1)
Abstract: The hyperbolicity of a graph, informally, measures how close a graph is (metrically) to a tree. Hence, it is intuitively similar to treewidth, but the measures are formally incomparable. Motivated by the broad study of algorithms and separators on planar graphs and their relation to treewidth, we initiate the study of planar graphs of bounded hyperbolicity. Our main technical contribution is a novel balanced separator theorem for planar $\delta$-hyperbolic graphs that is substantially stronger than the classic planar separator theorem. For any fixed $\delta \geq 0$, we can find balanced separator that induces either a single geodesic (shortest) path or a single geodesic cycle in the graph. An important advantage of our separator is that the union of our separator (vertex set $Z$) with any subset of the connected components of $G - Z$ induces again a planar $\delta$-hyperbolic graph, which would not be guaranteed with an arbitrary separator. Our construction runs in near-linear time and guarantees that size of separator is $\mathrm{poly}(\delta) \cdot \log n$. As an application of our separator theorem and its strong properties, we obtain two novel approximation schemes on planar $\delta$-hyperbolic graphs. We prove that Maximum Independent Set and the Traveling Salesperson problem have a near-linear time FPTAS for any constant $\delta$, running in $n\, \mathrm{polylog}(n) \cdot 2{\mathcal{O}(\delta2)} \cdot \varepsilon{-\mathcal{O}(\delta)}$ time. We also show that our approximation scheme for Maximum Independent Set has essentially the best possible running time under the Exponential Time Hypothesis (ETH). This immediately follows from our third contribution: we prove that Maximum Independent Set has no $n{o(\delta)}$-time algorithm on planar $\delta$-hyperbolic graphs, unless ETH fails.
- Metric tree-like structures in real-world networks: an empirical study. Networks, 67(1):49–68, 2016.
- Tree decompositions and social graphs. Internet Math., 12(5):315–361, 2016.
- Every Planar Map is Four-Colorable, volume 98 of Contemporary Mathematics. American Mathematical Society, 1989.
- Linear time algorithms for NP-hard problems restricted to partial k-trees. Discret. Appl. Math., 23(1):11–24, 1989.
- Brenda S. Baker. Approximation Algorithms for NP-Complete Problems on Planar Graphs. J. ACM, 41(1):153–180, 1994.
- Distance-hereditary graphs. J. Comb. Theory, Ser. B, 41(2):182–208, 1986.
- Minimum vertex cover in rectangle graphs. Comput. Geom., 44(6-7):356–364, 2011.
- Solving Vertex Cover in Polynomial Time on Hyperbolic Random Graphs. In Christophe Paul and Markus Bläser, editors, 37th International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 25:1–25:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
- Hyperbolic Random Graphs: Separators and Treewidth. In Piotr Sankowski and Christos D. Zaroliagis, editors, 24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 15:1–15:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.
- Cliques in Hyperbolic Random Graphs. Algorithmica, 80(8):2324–2344, 2018.
- Hans L. Bodlaender. A Tourist Guide through Treewidth. Acta Cybern., 11(1-2):1–21, 1993.
- Hans L. Bodlaender. A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.
- Hans L. Bodlaender. A Partial k-Arboretum of Graphs with Bounded Treewidth. Theor. Comput. Sci., 209(1-2):1–45, 1998.
- Hans L. Bodlaender. Discovering Treewidth. In Peter Vojtás, Mária Bieliková, Bernadette Charron-Bost, and Ondrej Sýkora, editors, SOFSEM 2005: Theory and Practice of Computer Science, 31st Conference on Current Trends in Theory and Practice of Computer Science, Liptovský Ján, Slovakia, January 22-28, 2005, Proceedings, volume 3381 of Lecture Notes in Computer Science, pages 1–16. Springer, 2005.
- Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput., 243:86–111, 2015.
- A cknsuperscript𝑐𝑘𝑛c^{k}nitalic_c start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_n 5-Approximation Algorithm for Treewidth. SIAM J. Comput., 45(2):317–378, 2016.
- Embeddings of Gromov hyperbolic spaces. Selected Works of Oded Schramm, pages 243–284, 2011.
- Hyperbolicity measures democracy in real-world networks. Phys. Rev. E, 92:032812, Sep 2015.
- Into the Square: On the Complexity of Some Quadratic-time Solvable Problems. In Pierluigi Crescenzi and Michele Loreti, editors, Proceedings of the 16th Italian Conference on Theoretical Computer Science, ICTCS 2015, Firenze, Italy, September 9-11, 2015, volume 322 of Electronic Notes in Theoretical Computer Science, pages 51–67. Elsevier, 2015.
- Károly Böröczky. Gömbkitöltések állandó görbületű terekben I. Matematikai Lapok (in Hungarian), 25(3-4):265–306, 1974.
- Engineering a PTAS for Minimum Feedback Vertex Set in Planar Graphs. In Ilias S. Kotsireas, Panos M. Pardalos, Konstantinos E. Parsopoulos, Dimitris Souravlias, and Arsenis Tsokas, editors, Analysis of Experimental Algorithms - Special Event, SEA22{{}^{2}}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT 2019, Kalamata, Greece, June 24-29, 2019, Revised Selected Papers, volume 11544 of Lecture Notes in Computer Science, pages 98–113. Springer, 2019.
- Metric spaces of non-positive curvature, volume 319 of Grundlehren der mathematischen Wissenschaften. Springer Berlin, Heidelberg, 1999.
- Hyperbolic geometry. Flavors of Geometry, 31(59-115):2, 1997.
- On the Hyperbolicity of Small-World and Tree-Like Random Graphs. In Kun-Mao Chao, Tsan-sheng Hsu, and Der-Tsai Lee, editors, Algorithms and Computation - 23rd International Symposium, ISAAC 2012, Taipei, Taiwan, December 19-21, 2012. Proceedings, volume 7676 of Lecture Notes in Computer Science, pages 278–288. Springer, 2012.
- Diameters, centers, and approximating trees of δ𝛿\deltaitalic_δ-hyperbolic geodesic spaces and graphs. In Monique Teillaud, editor, Proceedings of the 24th ACM Symposium on Computational Geometry, College Park, MD, USA, June 9-11, 2008, pages 59–68. ACM, 2008.
- Packing and Covering δ𝛿\deltaitalic_δ-Hyperbolic Spaces by Balls. In Moses Charikar, Klaus Jansen, Omer Reingold, and José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 10th International Workshop, APPROX 2007, and 11th International Workshop, RANDOM 2007, Princeton, NJ, USA, August 20-22, 2007, Proceedings, volume 4627 of Lecture Notes in Computer Science, pages 59–73. Springer, 2007.
- Applications of the Lipton and Tarjan’s planar separator theorem. Journal of Information Processing, 4(4):203–207, 1981.
- Nicos Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem. Technical Report Management Science Research Report 388, Carnegie-Mellon University, Pittsburgh, Pennsylvania, USA, 1976.
- Applying clique-decomposition for computing Gromov hyperbolicity. Theor. Comput. Sci., 690:114–139, 2017.
- Exact and Approximate Algorithms for Computing the Hyperbolicity of Large-Scale Graphs. Technical report, INRIA, September 2012.
- On Light Spanners, Low-treewidth Embeddings and Efficient Traversing in Minor-free Graphs. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 589–600. IEEE, 2020.
- Fully Polynomial FPT Algorithms for Some Classes of Bounded Clique-width Graphs. ACM Trans. Algorithms, 15(3):33:1–33:57, 2019.
- Bruno Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs. Inf. Comput., 85(1):12–75, 1990.
- Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time. ACM Trans. Algorithms, 18(2):17:1–17:31, 2022.
- A Framework for Exponential-Time-Hypothesis-Tight Algorithms and Lower Bounds in Geometric Intersection Graphs. SIAM J. Comput., 49(6):1291–1331, 2020.
- Treewidth and Hyperbolicity of the Internet. In Proceedings of The Tenth IEEE International Symposium on Networking Computing and Applications, NCA 2011, August 25-27, 2011, Cambridge, Massachusetts, USA, pages 25–32. IEEE Computer Society, 2011.
- Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM, 52(6):866–893, 2005.
- Bidimensionality: new connections between FPT algorithms and PTASs. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, British Columbia, Canada, January 23-25, 2005, pages 590–601. SIAM, 2005.
- Youssou Dieng. Décomposition arborescente des graphes planaires et routage compact. PhD thesis, L’Université Bordeaux I, 2009.
- On the Tree-Width of Planar Graphs. Electron. Notes Discret. Math., 34:593–596, 2009.
- Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012.
- Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions. Algorithmica, 58(3):790–810, 2010.
- Matching, Euler tours and the Chinese postman. Math. Program., 5(1):88–124, 1973.
- A Survey on Approximation in Parameterized Complexity: Hardness and Algorithms. Algorithms, 13(6):146, 2020.
- When Can Graph Hyperbolicity be Computed in Linear Time? Algorithmica, 81(5):2016–2045, 2019.
- Treewidth, Kernels, and Algorithms - Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday, volume 12160 of Lecture Notes in Computer Science. Springer, 2020.
- Excluded Grid Minors and Efficient Polynomial-Time Approximation Schemes. J. ACM, 65(2):10:1–10:44, 2018.
- Computing the Gromov hyperbolicity of a discrete metric space. Inf. Process. Lett., 115(6-8):576–579, 2015.
- Greg N. Frederickson. Fast Algorithms for Shortest Paths in Planar Graphs, with Applications. SIAM J. Comput., 16(6):1004–1022, 1987.
- Tobias Friedrich. From Graph Theory to Network Science: The Natural Emergence of Hyperbolicity (Tutorial). In Rolf Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, volume 126 of LIPIcs, pages 5:1–5:9. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
- Yong Gao. Treewidth of erdős-rényi random graphs, random intersection graphs, and scale-free random graphs. Discret. Appl. Math., 160(4-5):566–578, 2012.
- An Approximation Scheme for Planar Graph TSP. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23-25 October 1995, pages 640–645. IEEE Computer Society, 1995.
- Mikhael Gromov. Hyperbolic groups. In Essays in group theory, pages 75–263. Springer, 1987.
- Near-linear time constant-factor approximation algorithm for branch-decomposition of planar graphs. Discret. Appl. Math., 257:186–205, 2019.
- Sariel Har-Peled. Approximately: Independence Implies Vertex Cover. Note, Retrieved July 12, 2023, 2020.
- Width Parameters Beyond Tree-width and their Applications. Comput. J., 51(3):326–362, 2008.
- On the Complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367–375, 2001.
- Approximate tree decompositions of planar graphs in linear time. Theor. Comput. Sci., 645:60–90, 2016.
- Sándor Kisfaludi-Bak. Hyperbolic intersection graphs and (quasi)-polynomial time. CoRR, abs/1812.03960, 2018.
- Sándor Kisfaludi-Bak. Hyperbolic intersection graphs and (quasi)-polynomial time. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, pages 1621–1638. SIAM, 2020.
- Sándor Kisfaludi-Bak. A quasi-polynomial algorithm for well-spaced hyperbolic TSP. J. Comput. Geom., 12(2):25–54, 2021.
- Philip N. Klein. A Linear-Time Approximation Scheme for TSP in Undirected Planar Graphs with Edge-Weights. SIAM J. Comput., 37(6):1926–1952, 2008.
- Optimization algorithms for planar graphs. preparation, manuscript at http://planarity. org, 2014.
- Structured Recursive Separator Decompositions for Planar Graphs in Linear Time. CoRR, abs/1208.2223, 2012.
- Wavelength Conversion in Optical Networks. J. Algorithms, 38(1):25–50, 2001.
- Eryk Kopczyński. Hyperbolic minesweeper is in p. In 10th International Conference on Fun with Algorithms (FUN 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.
- Tuukka Korhonen. A Single-Exponential Time 2-Approximation Algorithm for Treewidth. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 184–192. IEEE, 2021.
- Oracles for bounded-length shortest paths in planar graphs. ACM Trans. Algorithms, 2(3):335–363, 2006.
- Algorithms on negatively curved spaces. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages 119–132. IEEE Computer Society, 2006.
- Local computations with probabilities on graphical structures and their applications to expert systems. Journal of the Royal Statistical Society, Series B, 50(2):157–224, 1988.
- Hung Le. A PTAS for subset TSP in minor-free graphs. CoRR, abs/1804.01588, 2018.
- Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters. Internet Math., 6(1):29–123, 2009.
- A Separator Theorem for Planar Graphs. SIAM Journal of Applied Mathematics, 36:177–189, 1979.
- Applications of a Planar Separator Theorem. SIAM J. Comput., 9(3):615–627, 1980.
- An experimental study of the treewidth of real-world graph data. In Pablo Barceló and Marco Calautti, editors, 22nd International Conference on Database Theory, ICDT 2019, March 26-28, 2019, Lisbon, Portugal, volume 127 of LIPIcs, pages 12:1–12:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
- Dániel Marx. On the Optimality of Planar and Geometric Approximation Schemes. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI, USA, Proceedings, pages 338–348. IEEE Computer Society, 2007.
- Large-scale curvature of networks. Phys. Rev. E, 84:066108, Dec 2011.
- Svatopluk Poljak. A note on stable sets and colorings of graphs. Commentationes Mathematicae Universitatis Carolinae, 15:307–309, 1974.
- The Four-Colour Theorem. J. Comb. Theory, Ser. B, 70(1):2–44, 1997.
- Graph Minors. II. Algorithmic Aspects of Tree-Width. J. Algorithms, 7(3):309–322, 1986.
- Graph minors. V. Excluding a planar graph. J. Comb. Theory, Ser. B, 41(1):92–114, 1986.
- Anatoliy I. Serdyukov. O nekotorykh ekstremal’nykh obkhodakh v grafakh. Upravlyaemye sistemy, 17:76–79, 1978.
- Hyperbolic embedding of internet graph for distance estimation and overlay construction. IEEE/ACM Trans. Netw., 16(1):25–36, 2008.
- Mikkel Thorup. Compact Oracles for Reachability and Approximate Distances in Planar Digraphs. J. ACM, 51(6):993–1024, nov 2004.
- William Thomas Tutte. Graph theory, volume 21. Cambridge university press, 2001.
- Martin Vatshelle. New Width Parameters of Graphs. PhD thesis, University of Bergen, Norway, 2012.
- Sándor Kisfaludi-Bak (25 papers)
- Jana Masaříková (3 papers)
- Erik Jan van Leeuwen (46 papers)
- Bartosz Walczak (42 papers)
- Karol Węgrzycki (37 papers)