Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How close are the eigenvectors and eigenvalues of the sample and actual covariance matrices? (1702.05443v1)

Published 17 Feb 2017 in stat.ML, math.ST, and stat.TH

Abstract: How many samples are sufficient to guarantee that the eigenvectors and eigenvalues of the sample covariance matrix are close to those of the actual covariance matrix? For a wide family of distributions, including distributions with finite second moment and distributions supported in a centered Euclidean ball, we prove that the inner product between eigenvectors of the sample and actual covariance matrices decreases proportionally to the respective eigenvalue distance. Our findings imply non-asymptotic concentration bounds for eigenvectors, eigenspaces, and eigenvalues. They also provide conditions for distinguishing principal components based on a constant number of samples.

Summary

We haven't generated a summary for this paper yet.