Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Critical collapse of a rotating scalar field in $2+1$ dimensions (1702.04601v2)

Published 15 Feb 2017 in gr-qc

Abstract: We carry out numerical simulations of the collapse of a complex rotating scalar field of the form $\Psi(t,r,\theta)=e{im\theta}\Phi(t,r)$, giving rise to an axisymmetric metric, in 2+1 spacetime dimensions with cosmological constant $\Lambda<0$, for $m=0,1,2$, for four 1-parameter families of initial data. We look for the familiar scaling of black hole mass and maximal Ricci curvature as a power of $|p-p_|$, where $p$ is the amplitude of our initial data and $p_$ some threshold. We find evidence of Ricci scaling for all families, and tentative evidence of mass scaling for most families, but the case $m>0$ is very different from the case $m=0$ we have considered before: the thresholds for mass scaling and Ricci scaling are significantly different (for the same family), scaling stops well above the scale set by $\Lambda$, and the exponents depend strongly on the family. Hence, in contrast to the $m=0$ case, and to many other self-gravitating systems, there is only weak evidence for the collapse threshold being controlled by a self-similar critical solution and no evidence for it being universal.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube