Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Currents and finite elements as tools for shape space (1702.02780v2)

Published 9 Feb 2017 in math.NA

Abstract: The nonlinear spaces of shapes (unparameterized immersed curves or submanifolds) are of interest for many applications in image analysis, such as the identification of shapes that are similar modulo the action of some group. In this paper we study a general representation of shapes that is based on linear spaces and is suitable for numerical discretization, being robust to noise. We develop the theory of currents for shape spaces by considering both the analytic and numerical aspects of the problem. In particular, we study the analytical properties of the current map and the $H{-s}$ norm that it induces on shapes. We determine the conditions under which the current determines the shape. We then provide a finite element discretization of the currents that is a practical computational tool for shapes. Finally, we demonstrate this approach on a variety of examples.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.