On the relaxed mean-field stochastic control problem (1702.00464v1)
Abstract: This paper is concerned with optimal control problems for systems governed by mean-field stochastic differential equation, in which the control enters both the drift and the diffusion coefficient. We prove that the relaxed state process, associated with measure valued controls, is governed by an orthogonal martingale measure rather that a Brownian motion. In particular, we show by a counter example that replacing the drift and diffusion coefficient by their relaxed counterparts does not define a true relaxed control problem. We establish the existence of an optimal relaxed control, which can be approximated by a sequence of strict controls. Moreover under some convexity conditions, we show that the optimal control is realized by a strict control.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.