Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pooling Facial Segments to Face: The Shallow and Deep Ends (1701.08341v1)

Published 29 Jan 2017 in cs.CV

Abstract: Generic face detection algorithms do not perform very well in the mobile domain due to significant presence of occluded and partially visible faces. One promising technique to handle the challenge of partial faces is to design face detectors based on facial segments. In this paper two such face detectors namely, SegFace and DeepSegFace, are proposed that detect the presence of a face given arbitrary combinations of certain face segments. Both methods use proposals from facial segments as input that are found using weak boosted classifiers. SegFace is a shallow and fast algorithm using traditional features, tailored for situations where real time constraints must be satisfied. On the other hand, DeepSegFace is a more powerful algorithm based on a deep convolutional neutral network (DCNN) architecture. DeepSegFace offers certain advantages over other DCNN-based face detectors as it requires relatively little amount of data to train by utilizing a novel data augmentation scheme and is very robust to occlusion by design. Extensive experiments show the superiority of the proposed methods, specially DeepSegFace, over other state-of-the-art face detectors in terms of precision-recall and ROC curve on two mobile face datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Upal Mahbub (12 papers)
  2. Sayantan Sarkar (11 papers)
  3. Rama Chellappa (190 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.