Papers
Topics
Authors
Recent
2000 character limit reached

Segment-based Methods for Facial Attribute Detection from Partial Faces

Published 10 Jan 2018 in cs.CV | (1801.03546v1)

Abstract: State-of-the-art methods of attribute detection from faces almost always assume the presence of a full, unoccluded face. Hence, their performance degrades for partially visible and occluded faces. In this paper, we introduce SPLITFACE, a deep convolutional neural network-based method that is explicitly designed to perform attribute detection in partially occluded faces. Taking several facial segments and the full face as input, the proposed method takes a data driven approach to determine which attributes are localized in which facial segments. The unique architecture of the network allows each attribute to be predicted by multiple segments, which permits the implementation of committee machine techniques for combining local and global decisions to boost performance. With access to segment-based predictions, SPLITFACE can predict well those attributes which are localized in the visible parts of the face, without having to rely on the presence of the whole face. We use the CelebA and LFWA facial attribute datasets for standard evaluations. We also modify both datasets, to occlude the faces, so that we can evaluate the performance of attribute detection algorithms on partial faces. Our evaluation shows that SPLITFACE significantly outperforms other recent methods especially for partial faces.

Citations (42)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.