On the monoid of monotone injective partial selfmaps of $\mathbb{N}^{2}_{\leqslant}$ with cofinite domains and images, II (1701.08015v2)
Abstract: Let $\mathbb{N}{2}_{\leqslant}$ be the set $\mathbb{N}{2}$ with the partial order defined as the product of usual order $\leq$ on the set of positive integers $\mathbb{N}$. We study the semigroup $\mathscr{P!O}!{\infty}(\mathbb{N}2{\leqslant})$ of monotone injective partial selfmaps of $\mathbb{N}{2}_{\leqslant}$ having cofinite domain and image. We describe the natural partial order on $\mathscr{P!O}!{\infty}(\mathbb{N}2{\leqslant})$ and show that it coincides with the natural partial order which is induced from symmetric inverse monoid $\mathscr{I}{\mathbb{N}\times\mathbb{N}}$ onto $\mathscr{P!O}!{\infty}(\mathbb{N}2_{\leqslant})$. We proved that the semigroup $\mathscr{P!O}!{\infty}(\mathbb{N}2{\leqslant})$ is isomorphic to the semidirect product $\mathscr{P!O}!{\infty}{\,+}(\mathbb{N}2{\leqslant})\rtimes \mathbb{Z}2$ of the monoid $\mathscr{P!O}!{\infty}{\,+}(\mathbb{N}2_{\leqslant})$ of orientation-preserving monotone injective partial selfmaps of $\mathbb{N}{2}_{\leqslant}$ with cofinite domains and images by the cyclic group $\mathbb{Z}2$ of the order two. Also we describe the congruence $\sigma$ on $\mathscr{P!O}!{\infty}(\mathbb{N}2_{\leqslant})$ which is generated by the natural order $\preccurlyeq$ on the semigroup $\mathscr{P!O}!{\infty}(\mathbb{N}2{\leqslant})$. We prove that the quotient semigroup $\mathscr{P!O}!{\infty}{\,+}(\mathbb{N}2{\leqslant})/\sigma$ is isomorphic to the free commutative monoid $\mathfrak{AM}\omega$ over an infinite countable set and show that the quotient semigroup $\mathscr{P!O}!{\infty}(\mathbb{N}2_{\leqslant})/\sigma$ is isomorphic to the semidirect product of the free commutative monoid $\mathfrak{AM}_\omega$ by $\mathbb{Z}_2$.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.