Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Convergence of percolation on uniform quadrangulations with boundary to SLE$_{6}$ on $\sqrt{8/3}$-Liouville quantum gravity (1701.05175v4)

Published 18 Jan 2017 in math.PR, math-ph, math.CO, math.CV, and math.MP

Abstract: Let $Q$ be a free Boltzmann quadrangulation with simple boundary decorated by a critical ($p=3/4$) face percolation configuration. We prove that the chordal percolation exploration path on $Q$ between two marked boundary edges converges in the scaling limit to chordal SLE$_6$ on an independent $\sqrt{8/3}$-Liouville quantum gravity disk (equivalently, a Brownian disk). The topology of convergence is the Gromov-Hausdorff-Prokhorov-uniform topology, the natural analog of the Gromov-Hausdorff topology for curve-decorated metric measure spaces. We also obtain analogous scaling limit results for face percolation on the uniform infinite half-plane quadrangulation with simple boundary, and for site percolation on a uniform triangulation with simple boundary. Our method of proof is robust and, up to certain technical steps, extends to any percolation model on a random planar map which can be explored via peeling.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.