Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 53 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A particle micro-macro decomposition based numerical scheme for collisional kinetic equations in the diffusion scaling (1701.05069v1)

Published 18 Jan 2017 in math.NA

Abstract: In this work, we derive particle schemes, based on micro-macro decomposition, for linear kinetic equations in the diffusion limit. Due to the particle approximation of the micro part, a splitting between the transport and the collision part has to be performed, and the stiffness of both these two parts prevent from uniform stability. To overcome this difficulty, the micro-macro system is reformulated into a continuous PDE whose coefficients are no longer stiff, and depend on the time step $\Delta t$ in a consistent way. This non-stiff reformulation of the micro-macro system allows the use of standard particle approximations for the transport part, and extends the work in [5] where a particle approximation has been applied using a micro-macro decomposition on kinetic equations in the fluid scaling. Beyond the so-called asymptotic-preserving property which is satisfied by our schemes, they significantly reduce the inherent noise of traditional particle methods, and they have a computational cost which decreases as the system approaches the diffusion limit.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.