Link cobordisms and absolute gradings on link Floer homology (1701.03454v3)
Abstract: We show that the link cobordism maps defined by the author are graded and satisfy a grading change formula. Using the grading change formula, we prove a new bound for $\Upsilon_K(t)$ for knot cobordisms in negative definite 4-manifolds. As another application, we show that the link cobordism maps associated to a connected, closed surface in $S4$ are determined by the genus of the surface. We also prove a new adjunction relation and adjunction inequality for the link cobordism maps. Along the way, we see how many known results in Heegaard Floer homology can be proven using basic properties of the link cobordism maps, together with the grading change formula.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.