Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Modularity of complex networks models (1701.03141v2)

Published 11 Jan 2017 in math.PR and math.CO

Abstract: Modularity is designed to measure the strength of division of a network into clusters (known also as communities). Networks with high modularity have dense connections between the vertices within clusters but sparse connections between vertices of different clusters. As a result, modularity is often used in optimization methods for detecting community structure in networks, and so it is an important graph parameter from a practical point of view. Unfortunately, many existing non-spatial models of complex networks do not generate graphs with high modularity; on the other hand, spatial models naturally create clusters. We investigate this phenomenon by considering a few examples from both sub-classes. We prove precise theoretical results for the classical model of random d-regular graphs as well as the preferential attachment model, and contrast these results with the ones for the spatial preferential attachment (SPA) model that is a model for complex networks in which vertices are embedded in a metric space, and each vertex has a sphere of influence whose size increases if the vertex gains an in-link, and otherwise decreases with time. The results obtained in this paper can be used for developing statistical tests for models selection and to measure statistical significance of clusters observed in complex networks.

Citations (40)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.