Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An RKHS model for variable selection in functional regression (1701.02512v2)

Published 10 Jan 2017 in stat.ME

Abstract: A mathematical model for variable selection in functional regression models with scalar response is proposed. By "variable selection" we mean a procedure to replace the whole trajectories of the functional explanatory variables with their values at a finite number of carefully selected instants (or "impact points"). The basic idea of our approach is to use the Reproducing Kernel Hilbert Space (RKHS) associated with the underlying process, instead of the more usual L2[0,1] space, in the definition of the linear model. This turns out to be especially suitable for variable selection purposes, since the finite-dimensional linear model based on the selected "impact points" can be seen as a particular case of the RKHS-based linear functional model. In this framework, we address the consistent estimation of the optimal design of impact points and we check, via simulations and real data examples, the performance of the proposed method.

Summary

We haven't generated a summary for this paper yet.