Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear Multivariate Function-on-function Regression with Variable Selection (2406.19021v1)

Published 27 Jun 2024 in stat.ME

Abstract: This paper proposes a multivariate nonlinear function-on-function regression model, which allows both the response and the covariates can be multi-dimensional functions. The model is built upon the multivariate functional reproducing kernel Hilbert space (RKHS) theory. It predicts the response function by linearly combining each covariate function in their respective functional RKHS, and extends the representation theorem to accommodate model estimation. Further variable selection is proposed by adding the lasso penalty to the coefficients of the kernel functions. A block coordinate descent algorithm is proposed for model estimation, and several theoretical properties are discussed. Finally, we evaluate the efficacy of our proposed model using simulation data and a real-case dataset in meteorology.

Summary

We haven't generated a summary for this paper yet.