Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

On a class of integrable systems of Monge-Ampère type (1701.02270v1)

Published 9 Jan 2017 in nlin.SI, math-ph, math.DG, and math.MP

Abstract: We investigate a class of multi-dimensional two-component systems of Monge-Amp`ere type that can be viewed as generalisations of heavenly-type equations appearing in self-dual Ricci-flat geometry. Based on the Jordan-Kronecker theory of skew-symmetric matrix pencils, a classification of normal forms of such systems is obtained. All two-component systems of Monge-Amp`ere type turn out to be integrable, and can be represented as the commutativity conditions of parameter-dependent vector fields. Geometrically, systems of Monge-Amp`ere type are associated with linear sections of the Grassmannians. This leads to an invariant differential-geometric characterisation of the Monge-Amp`ere property.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.