Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Just an Update on PMING Distance for Web-based Semantic Similarity in Artificial Intelligence and Data Mining (1701.02163v1)

Published 9 Jan 2017 in cs.AI, cs.CL, cs.IR, and math.PR

Abstract: One of the main problems that emerges in the classic approach to semantics is the difficulty in acquisition and maintenance of ontologies and semantic annotations. On the other hand, the Internet explosion and the massive diffusion of mobile smart devices lead to the creation of a worldwide system, which information is daily checked and fueled by the contribution of millions of users who interacts in a collaborative way. Search engines, continually exploring the Web, are a natural source of information on which to base a modern approach to semantic annotation. A promising idea is that it is possible to generalize the semantic similarity, under the assumption that semantically similar terms behave similarly, and define collaborative proximity measures based on the indexing information returned by search engines. The PMING Distance is a proximity measure used in data mining and information retrieval, which collaborative information express the degree of relationship between two terms, using only the number of documents returned as result for a query on a search engine. In this work, the PMINIG Distance is updated, providing a novel formal algebraic definition, which corrects previous works. The novel point of view underlines the features of the PMING to be a locally normalized linear combination of the Pointwise Mutual Information and Normalized Google Distance. The analyzed measure dynamically reflects the collaborative change made on the web resources.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)